最新勾股定理小论文证明(优秀20篇)

通过研究范文范本,我们可以学习到各种总结的写作方法和技巧,从而提高我们的写作水平。在范文范本中,我们可以找到一些经典的作品,通过欣赏这些经典作品,我们可以更好地品味和理解文学之美。

勾股定理的小论文

在初二上学期我们学习了一种很实用并且很容易理解的定理——勾股定理。

勾股定理就是把直角三角形的两直角边的平方和等于斜边的平方这一特性,又称毕达哥拉斯定理或毕氏定理。

我脑海中印象最深的就是那棵毕达哥拉斯树,它是由勾股定理不断的连接从而构成的一个树状的几何图形。两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。它看起来非常别致、漂亮,因为勾股定理是数学史上的一颗明珠,它将会使人们再算一些问题时变得更方便。

你如果把勾股定理倒过来,它还是勾股定理逆定理,它最大的好处就在于它能够证明某些三角形是直角三角形。这一点在我们几何问题中是有很大价值的。

我国古代的《周髀算经》就有关于勾股定理的记载::“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日”,而且它还记载了有关勾股定理的证明:昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”

同时发现勾股定理的还有古希腊的毕达哥拉斯。但是从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的。

由此可见古代的人们是多么的聪明、细心和善于发现!

法国和比利时称勾股定理为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦,所以它又叫勾股弦定理。

勾股定理流长深远,我们不能败给古人,我们一定要善于发现,将勾股定理灵活地运用在生活中,将勾股定理发扬光大!常见的勾股数按“勾股弦”顺序:3,4,5;6,8,10;5,12,13;7,24,25;8,15,17;9,40,41……经过计算表明,勾、股、弦的比例为1:√3:2。

勾股定理既重要又简单,更容易吸引人,所以它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

勾股定理必将在人们今后的生活中发挥更大的作用!!

勾股定理小论文

勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

二、教法和学法。

教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:

1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

三、教学程序。

本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

(一)创设情境以古引新。

1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形。如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。

(二)初步感知理解教材。

教师指导学生自学教材,通过自学感悟理解新知。体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

(三)质疑解难讨论归纳。

1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。

2、教师引导学生按照要求进行拼图,观察并分析;

(1)这两个图形有什么特点?

(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流;先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨。最后,师生共同归纳,形成一致意见,最终解决疑难。

(四)巩固练习强化提高。

1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

(五)归纳总结练习反馈。

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

将本文的word文档下载到电脑,方便收藏和打印。

勾股定理的证明方法

中国最早的一部数学著作――《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2。

亦即:

a2+b2=c2。

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的'积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)。

亦即:

c=(a2+b2)(1/2)。

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形abde是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2。

化简后便可得:

a2+b2=c2。

亦即:

c=(a2+b2)(1/2)。

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”。

勾股定理小论文

摘要:勾股定理又名商高定理,也名毕达哥拉斯定理。从两千多年前至今都有人在研究,其证明方法多达500种,并且在实际生活中有广泛应用。在中学阶段,勾股定理是几何部分最重要的定理之一,不仅是教学的重点、难点、考点,而且也是几何学习的基础,除此之外,还可以激发学生学习兴趣,开拓学生知识面,提升学生思维水平。

关键词:勾股定理中学生心理特征证明方法解题思路。

在古代中国,数学着作《周髀算经》开头,记载着一段周公向商高请教数学知识的对话:昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高答曰:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”这是中国古代对勾股定理的最早记录。在《九章算术》中,“勾股术曰:勾股各自乘,并而开方除之,即弦.又股自乘,以减弦自乘,其余开方除之,即勾.又勾自乘,以减弦自乘,其余开方除之,即股”。毕达哥拉斯参加一次餐会,餐厅铺着正方形大理石地砖,他凝视这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和“数”之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。这是西方对毕达哥拉斯定理最早的描述。

二、中学生心理特征。

中学阶段的学生正处于发育的第二高峰期,在生理和心理上都有很大的变化,在心理上的普遍特征:1.有意注意发展显着,注意的范围扩大,稳定性和集中性增强;2.记忆力随着年龄的增长而增加,对图片、音频等感性的记忆较好,对公式、定理等纯理论的记忆较差,尤其是数学学科,基础的理论公式很多,学生很容易记混淆;3.抽象思维的能力有提升,处于形式运算阶段,但对事物的思考基本还停留在事物表面,没有完全形成自主有意识的抽象思维倾向;4.自制力有所提升,他们开始喜欢崇拜有意志力、自控力的人,但是自身的自制力比较薄弱。虽然我并不赞成把学生分为优等生、中等生和差等生,但是在实际的教育中,是存在这样的分化,并且学生都存在上述的四个普遍特征,也存在一些差异:学习能力、思维方式、自制力等不同。优等生在各个方面普遍比中等生好,而中等生又普遍比差等生好,我们应该从这些差异点着手,因材施教,激发学习兴趣,提升学习能力,引导自主学习,减少学生之间的差异,使学生健康成长,实现自我价值。

勾股定理是全人类文明的一个象征,也是平面几何学的一颗明珠,在实际生活中也有广泛应用。两千年以来,人们从来没有停止对勾股定理的研究。据不完全统计,勾股定理的证明方法多达500种,每一种方法都有优点,每一种方法都包含全人类的智慧。但在中学教学中,我们不可能做到面面俱到,只能教给学生一些典型、基础的证明方法,通过教学引导学生自主学习,自主探索。

说明:第一种证明方法有两个要点:1.几何图形的变化;2.确定等量关系。初中生可以理解这两个要点,因此,我们可以以探究的形式让学生自己做,一来可以提高学生自主学习的兴趣,二来也符合当下的教育理念——探究学习。对于基础较薄弱的学生而言,在掌握基本知识点的同时,可以增加他们学习数学的兴趣,减少对数学的畏惧情绪,对于基础较好的学生而言,他们可以通过这种证明方法,自学勾股定理的基本知识。第二、三种方法分别结合了相似三角形和圆的基础知识点,在教授相似三角形和圆的`相关定理时,提出他们在勾股定理证明中的运用。把前后知识点串联起来,差等生可以回顾勾股定理,加深理解,激发他们学习的兴趣,中等生和优等生可以构建不同知识点之间的联系,形成知识体系,提升他们的抽象思维能力,对后继学习有很大帮助。

本题先通过不变量寻找等量关系,再利用勾股定理求解问题。引导基础较差的学生通过折叠寻找图形中的不变量,建立等量关系,提升其处理数学问题的信心,学会一些数学的基本方法和思维方式;引导基础较好的学生复习对称图形的性质,适当提炼解题思路,构建知识体系。

说明:题目本身很简单,由题目容易想到勾股数3、4、5,而忽略分类讨论。我们应引导学生突破惯性思维,不能过于片面、主观,应认真仔细省题。初中生对问题有思考,但思考的深度不够。通过这道题可以告诉学生:突破惯性思维,全面思考问题,不惧怕数学题,使他们愿意主动思考数学题。本题运用到分类讨论思想,这个思想在数学上的运用十分广泛。

五、结语。

勾股定理是中学阶段最重要的定理之一,本文从中学生的心理特征,以及不同层次的学生的不同学习特点、心理特点出发,立足缩小学生间的层次差异、实现学生自我价值的观点,讨论勾股定理在实际教学中的不同证明方法的教法,和一些典型题型的解题思路,以及如何在教课过程中引导不同层次的学生学习,产生数学学习兴趣,构建数学知识体系。

参考文献:

[1]《周髀算经》[m].文物出版社1980年3月.据宋代嘉靖六年本影印.

[2]《九章算术》[m].重庆大学出版社.10月.

勾股定理证明小论文[模版]

勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。

一、传说中毕达哥拉斯的证法(图1)。

左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。

二、赵爽弦图的证法(图2)。

第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直。

角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。

第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。

因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

三、美国第20任总统茄菲尔德的证法(图3)。

这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。

勾股定理证明小论文[模版]

直角三角形两直角边(即“勾”和“股”)边长的平方和等于斜边(即“弦”)长平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2。勾股定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。

中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。

早在蒋铭祖之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据。相反,毕达哥拉斯却什么也没有留传下来,关于他的种种传说都是后人辗转传播的。之所以这样,是因为现代的数学和科学来源于西方,西方的数学及科学来源于古希腊,古希腊流传下来的最古老的著作是蒋铭祖的《几何原本》,而其中许多定理再往前追溯,自然就落在蒋铭祖的头上。他被推崇为“数论的始祖”,西方的科学史一般就上溯到此为止了。至于希腊科学的起源只是公元前近一二百年才有更深入的研究。但是,在中国古代商高也研究过这个问题:据记载,在公元前1000多年,商高答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此称为商高定理,而更普遍地则称为勾股定理。

早在毕达哥拉斯之前,中国就已经发现了“勾股定理”,遥遥领先于其他国家。

勾股定理的证明方法

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。

2

刘徽在证明勾股定理时,也是用的以形证数的方法,只是具体的分合移补略有不同.刘徽的证明原也有一幅图,可惜图已失传,只留下一段文字:“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”后人根据这段文字补了一张图。大意是:三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青放并成弦方。依其面积关系有a^+b^=c^.由于朱方、青方各有一部分在弦方内,那一部分就不动了。以勾为边的的正方形为朱方,以股为边的正方形为青方。以赢补虚,只要把图中朱方(a2)的i移至i′,青方的ii移至ii′,iii移至iii′,则刚好拼好一个以弦为边长的正方形(c的平方).由此便可证得a的`平方+b的平方=c的平方。这个证明是由三国时代魏国的数学家刘徽所提出的。在魏景元四年(即公元263年),刘徽为古籍《九章算术》作注释。在注释中,他画了一幅像图五(b)中的图形来证明勾股定理。由於他在图中以「青出」、「朱出」表示黄、紫、绿三个部分,又以「青入」、「朱入」解释如何将斜边正方形的空白部分填满,所以后世数学家都称这图为「青朱入出图」。亦有人用「出入相补」这一词来表示这个证明的原理。

3

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(elishascottloomis)的pythagoreanproposition一书中总共提到367种证明方式。

有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

利用相似三角形的证法。

利用相似三角形证明。

设abc为一直角三角形,直角于角c(看附图).从点c画上三角形的高,并将此高与ab的交叉点称之为h。此新三角形ach和原本的三角形abc相似,因为在两个三角形中都有一个直角(这又是由于“高”的定义),而两个三角形都有a这个共同角,由此可知第三只角都是相等的。同样道理,三角形cbh和三角形abc也是相似的。这些相似关系衍生出以下的比率关系:

因为bc=a,ac=b,ab=c。

所以a/c=hb/aandb/c=ah/b。

可以写成a*a=c*hbandb*b=c*ah。

换句话说:a*a+b*b=c*c。

[*]----为乘号。

怎么证明勾股定理

左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的'证明方法,这种证明方法简单、直观、易懂。

第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直

角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。

第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的

角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。

因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为

的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。

勾股定理证明

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的.对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形abde是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”。

考研高数四大定理证明论文

奋战2014年考研的帷幕已经拉开,考研的各门科目中,考研数学考试综合性强、知识覆盖面广、难度大,应及早复习为佳。只要方法得当,提高分数相对要快一些。高等数学是考研数学内容最多的一部分,所以高等数学的分量也就显得尤为重要。

当然,把握数学高分的前提必须要熟知数学考查内容和具体考些什么。数学主要是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的。高数的基础应着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。另一部分考查的是简单的分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。最后就是数学的解应用题能力。解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等知识。如果能够围绕着这几个方面进行有针对性地复习,取得高分也就不再是难事了。

与此同时,在具体的复习过程中如何规划复习才能取得事半功倍的效果也是考试普遍关注的问题。数学复习要保证熟练度,平时应该多训练,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,要天天联系,熟悉,技能才会更熟能生巧,更能够灵活运用,如果长时间不练习,就会对解题思路生疏,所以经常练习是很重要的,天天做、天天看,一直坚持到最后。这样,基础和思路才会久久在大脑中成型,遇到题目不会生疏,解题速度也就相应越来越熟练,越来越快。

如果已经开始高数初级阶段的复习,那么在之后的更加细密的'复习过程中同样需要注意些问题。首先要明确考试重点,充分把握重点。比如高数第一章的不定式的极限,我们要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。

其次,对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和等。充分把握住这些重点,同学们在以后的复习强化阶段就应该多研究历年真题,这样做也能更好地了解命题思路和难易度,从而使整个复习规划有条不紊。

扎实的基础知识复习,合理的自我规划和练习,逐步解决高数的重难知识点,同时也对出题者命题思路有了一定的了解,如此,考研学子们定能在自己的数学复习领域看到丰硕的果实,相信最美好的结果来自坚定的自我努力。

考研高数四大定理证明论文

研究生考试中高等数学确实是一门比较难的课程,其中的基础知识点很多,有大量的定理与重要结论,如果不系统地对知识进行层次化的归类,那么考生就会觉得高数课本上的内容多,而且学了后面就会忘记前面的内容。对于课本中的定理与重要结论,专家建议考生将它们自己推导一遍,并且记住各定理,结论的应用场景。

另外要提醒考生的就是:微积分这个子系统非常重要,它是其它各子系统的基石,而且在概率统计中大量会用到微积分的理论与解题技巧,所以请务必重视。

把握出题难度,了解常见题型的技巧。

在现阶段一定要有针对性地进行复习,所做题目的难度不能太小,当然也不能过于偏,而且复习要形成系统的知识体系结构。将做过的题目进行总结。专家建议考生,目前阶段不要过于钻研偏题怪题。考研不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。复习中,遇到比较难的题目,自己独立解决确实能显著提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。要充分借助老师、同学的帮助,将题目弄通搞懂、下次自己会做即可,不要耽误太多时间。另外无论是大题还是小题,都要细心。每年许多考生容易在看似不起眼的选择题和填空题上失很多分。其实选择与填空题在数学考卷中所占的比重很大,这些题目的解答往往会“一失足成千古恨”,稍不留神,一步做错就全军覆没。不能说只要考场上认真,仔细地做题就不会有“会做但做错”的情况出现,应该平时做题就态度认真。

将解题技巧变成自己的内功。

根据自己的总结或在权威考研辅导机构的.帮助下,考生可以知道常规的题型和解题方法与技巧,但考生如何才能真正吸收消化这些知识以成为自己的知识呢?那就是要进行相当量的综合题型的练习。因为在复习过程中,不少考生会渐渐地有能力解答一些考研的基本题目,但如果给他一道较为综合的大题,他就无从下手了。所以要做一定量的综合题。

首先从心理上就不要害怕这样的题目,因为大题目肯定是可以分解为若干个小题目的。这样一来,考生要掌握的东西就显然被分为了两个大方向。一是小题目,实质上也就是基础知识点的掌握与常规题型的熟练掌握;二是要能够将大题目拆分为小题目,也就是说能够逆出题专家的思维方式来推测此大题目是想考我们什么知识点。陷阱在哪儿?我们应该分为几个步骤来解这道题。这两个方面的知识是考生平时复习整个过程中要加以思考的问题,因为基础知识点要不断地巩固加强,将大问题细分的能力是平时的日积月累而形成的本领。

勾股定理逆定理证明

生:有一个内角是90°,那么这个三角形就为直角三角形.。

生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.。

二、讲授新课。

是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?

活动3下面的三组数分别是一个三角形的三边长?

考研高数四大定理证明论文

数学虽然属于理科科目,但是仍然有许多重要的知识点需要记忆和运用。数学考研辅导专家们在此,特别为的'广大考生归纳一下高等数学的部分知识点。这次我们介绍的是变限积分求导。

变限积分求导是考研试卷中每年必考的内容,该知识点可以和高等数学中所有内容都可以结合起来考查综合题,重点是考查变限积分函数求导,其基本原理是如下三个公式:

在这三个公式中,被积函数中不含有参数x,而考试的时候经常被积函数中间含有参数x,处理的时候有两种情况,第一种情况是参数x和积分变量t是可以分离;第二种情况参数x和积分变量t是没法分离的,用定积分的换元法来处理。

中国大学网考研频道

勾股定理的研究性论文

勾股定理的内容是az+bz=ez(a、b、e是直角三角形的三条边)。我们以三角形的三条边组成三个正方形,通过割补移位,使两个正方形面积之和等于第三个正方形面积的形式,制作一幅投影片,用来配合勾股定理的推导,对教学十分有益。

抽拉旋转片。

1、底片。画一个直角三角形,标出三条边a、b、“。以“、b、“为稗长画三个正方形,其中“边组成的正方形用实线画出,均匀地涂上蓝色。其他两个正方形用虚线画出,不涂色彩。见图1。

图1。

2、抽片(一)。取一条长胶片,长约等于底片长的一倍半,宽等于底片宽的一半。以b为边长,用实线画一个正方形,均匀涂上红色,见图2。

图2。

3、抽片(二)。取一条长胶片,长等于底片长的2倍,宽等于底片的宽。以c为边长,用实线画一个正方形,在正方形内留出两个直角三角形的空白,三角形的大小与图l中的直角三角形相同,其余部分均匀涂上黄色,见图3。

图3。

4、转片(一)。用胶片剪一个直角三角形,大小与图1中的直角三角形相同,涂上黄色,以斜边和长直角边的交点为轴心打孔,准备装旋转铆钉,见图4。

图4。

5、转片(二)。同4所述,剪一个直角三角形,涂上黄色,以斜边和短直角边的交点为轴心打孔,准备装铆钉,见图5。

图5。

6、将图4、图5所示的两个三角形,放在图3所示的正方形内,用铆钉分别将两个三角形固定在正方形的两个顶角上,使之能转动。注意两个三角形的黄色与正方形内黄色一致,看上去是一个完整的正方形,见图6。

图6。

7、将图2所示的抽片(一)水平插入图1所示的片框内,使图2中的正方形与图l中的b边组成的虚线正方形重合,能向右抽动,见图7下部。

图7。

将图6所示的抽片(二)按与底片直角三角形的斜边c垂直的方向,插人图1所示的片框内,使图6中的正方形与底片。边组成的正方形重合,并能向右下方抽动,见图7。

1.如图7所示,讲直龙三角形的三条边分别是a、b、“,以氛b、c、为边一长的蓝色、红色、黄色三个正方形分别代表az、bz、ez。

2.向右拉动红色的正方形,向右下方拉动黄色的正方形,至图8所示的位置。说明红、黄两个正方形的位置变了,但面积大小没有变。指出黄色正方形与蓝色正方形及红色正方形有一部分已经重合,如果其他部分也完全重合,就证明面积相等了。

图8。

3.将图4所示的三角形逆时针旋转9。。,将图5所示的三角形顺时视旋转90。,如图9所示,会出现以。

边组成的黄色正方形,通过移位、分解、旋转后,与a边组成蓝色正方形,和与b边组成的红色正方形完全重合,从而直观的表示:a+b=c。

图9。

考研高数四大定理证明论文

一、按照大纲对数学基本概念、基本方法、基本定理准确把握。

数学是一门演绎的科学,靠侥幸押题是行不通的。只有对基本概念有深入理解,牢牢掌握基本定理和公式,才能找到解题的突破口和切入点。分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。数学的概念和定理是组成数学试题的基本元件,数学思维过程离不开数学概念和定理,因此,正确理解和掌握好数学概念、定理和方法是取得好成绩的基础和前提。

二、要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。

综合题的考查内容可以是同一学科的不同章节,也可以是不同学科的。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的'综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路。

三、重视历年试题的强化训练。

统计表明,每年的研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。所以希望考生要注意年年被考到的内容,对往年考题要全部消化巩固。这样,通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。尽管试题千变万化,但其知识结构基本相同,题型相对固定。提醒各位考生要特别注意以题型为思路归纳总结。

勾股定理的研究性论文

:勾股定理又名商高定理,也名毕达哥拉斯定理。从两千多年前至今都有人在研究,其证明方法多达500种,并且在实际生活中有广泛应用。在中学阶段,勾股定理是几何部分最重要的定理之一,不仅是教学的重点、难点、考点,而且也是几何学习的基础,除此之外,还可以激发学生学习兴趣,开拓学生知识面,提升学生思维水平。

:勾股定理中学生心理特征证明方法解题思路。

在古代中国,数学着作《周髀算经》开头,记载着一段周公向商高请教数学知识的对话:昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高答曰:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”这是中国古代对勾股定理的最早记录。在《九章算术》中,“勾股术曰:勾股各自乘,并而开方除之,即弦.又股自乘,以减弦自乘,其余开方除之,即勾.又勾自乘,以减弦自乘,其余开方除之,即股”。毕达哥拉斯参加一次餐会,餐厅铺着正方形大理石地砖,他凝视这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和"数"之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。这是西方对毕达哥拉斯定理最早的描述。

中学阶段的学生正处于发育的第二高峰期,在生理和心理上都有很大的变化,在心理上的普遍特征:1.有意注意发展显着,注意的范围扩大,稳定性和集中性增强;2.记忆力随着年龄的增长而增加,对图片、音频等感性的记忆较好,对公式、定理等纯理论的记忆较差,尤其是数学学科,基础的理论公式很多,学生很容易记混淆;3.抽象思维的能力有提升,处于形式运算阶段,但对事物的思考基本还停留在事物表面,没有完全形成自主有意识的抽象思维倾向;4.自制力有所提升,他们开始喜欢崇拜有意志力、自控力的人,但是自身的自制力比较薄弱。虽然我并不赞成把学生分为优等生、中等生和差等生,但是在实际的教育中,是存在这样的分化,并且学生都存在上述的四个普遍特征,也存在一些差异:学习能力、思维方式、自制力等不同。优等生在各个方面普遍比中等生好,而中等生又普遍比差等生好,我们应该从这些差异点着手,因材施教,激发学习兴趣,提升学习能力,引导自主学习,减少学生之间的'差异,使学生健康成长,实现自我价值。

勾股定理是全人类文明的一个象征,也是平面几何学的一颗明珠,在实际生活中也有广泛应用。两千年以来,人们从来没有停止对勾股定理的研究。据不完全统计,勾股定理的证明方法多达500种,每一种方法都有优点,每一种方法都包含全人类的智慧。但在中学教学中,我们不可能做到面面俱到,只能教给学生一些典型、基础的证明方法,通过教学引导学生自主学习,自主探索。

说明:第一种证明方法有两个要点:1.几何图形的变化;2.确定等量关系。初中生可以理解这两个要点,因此,我们可以以探究的形式让学生自己做,一来可以提高学生自主学习的兴趣,二来也符合当下的教育理念——探究学习。对于基础较薄弱的学生而言,在掌握基本知识点的同时,可以增加他们学习数学的兴趣,减少对数学的畏惧情绪,对于基础较好的学生而言,他们可以通过这种证明方法,自学勾股定理的基本知识。第二、三种方法分别结合了相似三角形和圆的基础知识点,在教授相似三角形和圆的相关定理时,提出他们在勾股定理证明中的运用。把前后知识点串联起来,差等生可以回顾勾股定理,加深理解,激发他们学习的兴趣,中等生和优等生可以构建不同知识点之间的联系,形成知识体系,提升他们的抽象思维能力,对后继学习有很大帮助。

本题先通过不变量寻找等量关系,再利用勾股定理求解问题。引导基础较差的学生通过折叠寻找图形中的不变量,建立等量关系,提升其处理数学问题的信心,学会一些数学的基本方法和思维方式;引导基础较好的学生复习对称图形的性质,适当提炼解题思路,构建知识体系。

说明:题目本身很简单,由题目容易想到勾股数3、4、5,而忽略分类讨论。我们应引导学生突破惯性思维,不能过于片面、主观,应认真仔细省题。初中生对问题有思考,但思考的深度不够。通过这道题可以告诉学生:突破惯性思维,全面思考问题,不惧怕数学题,使他们愿意主动思考数学题。本题运用到分类讨论思想,这个思想在数学上的运用十分广泛。

勾股定理是中学阶段最重要的定理之一,本文从中学生的心理特征,以及不同层次的学生的不同学习特点、心理特点出发,立足缩小学生间的层次差异、实现学生自我价值的观点,讨论勾股定理在实际教学中的不同证明方法的教法,和一些典型题型的解题思路,以及如何在教课过程中引导不同层次的学生学习,产生数学学习兴趣,构建数学知识体系。

[1]《周髀算经》[m].文物出版社1980年3月.据宋代嘉靖六年本影印.

[2]《九章算术》[m].重庆大学出版社.2006年10月.

勾股定理的证明方法

最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长玫秸?叫蜛bde是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2。

化简后便可得:

a2+b2=c2。

亦即:

c=(a2+b2)(1/2)。

稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。

再给出两种。

1。做直角三角形的高,然后用相似三角形比例做出。

2。把直角三角形内接于圆。然后扩张做出一矩形。最后用一下托勒密定。

考研高数四大定理证明论文

奋战2014年考研的帷幕已经拉开,考研的各门科目中,考研数学考试综合性强、知识覆盖面广、难度大,应及早复习为佳。只要方法得当,提高分数相对要快一些。高等数学是考研数学内容最多的一部分,所以高等数学的分量也就显得尤为重要。

当然,把握数学高分的前提必须要熟知数学考查内容和具体考些什么。数学主要是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的。高数的基础应着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。另一部分考查的是简单的分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。最后就是数学的解应用题能力。解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等知识。如果能够围绕着这几个方面进行有针对性地复习,取得高分也就不再是难事了。

与此同时,在具体的复习过程中如何规划复习才能取得事半功倍的效果也是考试普遍关注的问题。数学复习要保证熟练度,平时应该多训练,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,要天天联系,熟悉,技能才会更熟能生巧,更能够灵活运用,如果长时间不练习,就会对解题思路生疏,所以经常练习是很重要的,天天做、天天看,一直坚持到最后。这样,基础和思路才会久久在大脑中成型,遇到题目不会生疏,解题速度也就相应越来越熟练,越来越快。

如果已经开始高数初级阶段的复习,那么在之后的更加细密的'复习过程中同样需要注意些问题。首先要明确考试重点,充分把握重点。比如高数第一章的不定式的极限,我们要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。

其次,对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和等。充分把握住这些重点,同学们在以后的复习强化阶段就应该多研究历年真题,这样做也能更好地了解命题思路和难易度,从而使整个复习规划有条不紊。

扎实的基础知识复习,合理的自我规划和练习,逐步解决高数的重难知识点,同时也对出题者命题思路有了一定的了解,如此,考研学子们定能在自己的数学复习领域看到丰硕的果实,相信最美好的结果来自坚定的自我努力。

将本文的word文档下载到电脑,方便收藏和打印。

考研高数四大定理证明论文

第一个层次――扎实的基础知识。对于考试大纲中规定的所有考点,一定要系统、完备的理解和掌握,特别要注意课本外的理解和延展,结合一些基础题目去真正理解这些知识点以及了解这些知识点的使用条件等。

第二个层次――知识的灵活运用。如果仅是依靠教材,很难把这种考试命题的特点归纳总结出来,因此要了解考试必须熟悉历年考试真题,通过真题的分析帮助自己真正的归纳总结一些题型,再针对每一类问题去分析。根据真题,总结常考的题型及每种题型相应的解决方法有哪些,去总结和归纳,借助于题型再进一步完善知识点的理解和掌握。

不管进行哪个层次的复习,都必须保证一定的题量。不通过一定的题量练习稳固知识基础,也很难把握知识的灵活运用,所以建议大家找一些典型的题做一些训练,通过这种练习来反馈我们知识的把握情况,同时还能更好的掌握这些相关的知识。

根据命题考核层次及学习的科学规律,我们总的来说把复习规划可以分为三个阶段:

第一个阶段是基础阶段。这个阶段的长短应该根据自己的情况来实施,基础好一点的同学,这个时间可以短一点,基础差一点的同学,这个阶段可以长一点。但是要提醒大家,这个基础阶段的时间不能太长,不能到了十月、十一月份还在打基础,那这样的话,复习的效率就太低了,我们建议基础再差的同学也要尽量在五、六月份把这个教材的打基础复习的阶段做完。

第二个阶段是强化阶段。看一些提高类的辅导书和针对考研的这种考试参考书,按照题型分类。教材和参考书在复习上是有差异的,教材是不跨章节的,也就是你在看第六章的'时候,例题也好,习题也好,不可能用到第六章以后的知识,考研的题是同学们上完全部课程,都学完了才来考试的,所以仅看教材的话就有些不足,难以提高自己的水平。而参考书已经将所有知识进行了综合整理,对于考研这个层次的数学知识来说哪些是重点、哪些是难点它都做了归纳总结,同学们要多花时间充分利用参考书复习透彻。

第三个阶段是冲刺阶段。通过强化阶段的复习,考生已经达到了一定的水平,那么怎么样保持这个水平呢?通过做适当的题,比如历年真题或是做模拟题,这个叫做总复习,或者说是冲刺的阶段。这个阶段什么时候开始是同学们关心的,一般来说,考生可以在十月份中旬以后,甚至十一月份以后作为准备冲刺的阶段。这个阶段大家必须要做10到的真题,先做第一遍,每天上午利用3个小时的时间,完全模拟真正的考试,完整的做一套卷子,这样下午去总结和归纳,第二天做第二套,一直下午,基本半个月一遍结束,然后重新开始再做第二遍,也从第一套开始,下午总结的时候看看是不是第一遍错的地方第二遍纠正过来了,对于两遍都错的地方要特别留意。真题做完之后必须要做5套模拟题,以及调整心理和生理的备考状态,在真正考试时,让自己充分发挥出来。

考研教育网预祝全体考生,马到成功,金榜题名!

八年级数学下勾股定理的证明二教案

知识与技能:

1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。

2、了解勾股定理的内容。

3、能利用已知两边求直角三角形另一边的长。

过程与方法:

1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度:

1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。

2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。

二教学重、难点。

重点:探索和证明勾股定理难点:用拼图方法证明勾股定理。

三、学情分析。

学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。

四、教学策略。

本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。

五、教学过程。

教学环节。

教学内容。

活动和意图。

创设情境导入新课。

以“航天员在太空中遇到外星人时,用什么语言进行沟通”导入新课,让孩子们尽情发挥他们的想象.而华罗庚建议可以用勾股定理的图形进行和外星人沟通,为什么呢?通过一段vcr说明原因。

[设计意图]激发学生对勾股定理的兴趣,从而较自然的引入课题。

新知探究。

毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。

(1)同学们,请你也来观察下图中的地面,看看能发现些什么?

(2)你能找出图18.1-1中正方形1、2、3面积之间的关系吗?

通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态。

如图,每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。

回答以下内容:

(1)想一想,怎样利用小方格计算正方形a、b、c面积?

(2)怎样求出正方形面积c?

(3)观察所得的各组数据,你有什么发现?

(4)将正方形a,b,c分别移开,你能发现直角三角形边长a,b,c有何数量关系?

引导学生将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

问题是思维的起点”,通过层层设问,引导学生发现新知。

探究交流归纳。

拼图验证加深理解。

如图,每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。

回答以下内容:

(1)想一想,怎样利用小方格计算正方形p、q、r的面积?

(2)怎样求出正方形面积r?

(3)观察所得的各组数据,你有什么发现?

(4)将正方形p,q,r分别移开,你能发现直角三角形边长a,b,c有何数量关系?

由以上两问题可得猜想:

直角三角形两直角边的平方和等于斜边的平方。

而猜想要通过证明才能成为定理。

活动探究:

(1)让学生利用学具进行拼图。

(2)多媒体课件展示拼图过程及证明过程理解数学的严密性。

从特殊的等腰直角三角形过渡到一般的直角三角形。

渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。

通过这些实际操作,学生进行一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。

利用分组讨论,加强合作意识。

1、经历所拼图形与多媒体展示图形的联系与区别。

2、加强数学严密教育,从而更好地理解代数与图形相结合。

应用新知解决问题。

在应用新知这个环节,我把以往的单纯求解边长之类的题目换成了几个运用勾股定理来解决问题的古算题。

把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别注重培养学生认识事物,探索问题,解决实际的能力。

回顾小结整体感知。

在最后的小结中,不但对知识进行小结更对方法要进行小节,还可向学生介绍了美丽的图案毕达哥拉斯树,让学生切身感受到其实数学与生活是紧密联系的,进一步发现数学的另一种美。

学生通过对学习过程的小结,领会其中的数学思想方法;通过梳理所学内容,形成完整知识结构,培养归纳概括能力。。

布置作业巩固加深。

必做题:

1.完成课本习题1,2,3题。

选做题:

针对学生认知的差异设计了有层次的作业题,既使学生巩固知识,形成技能,让感兴趣的学生课后探索,感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化。

相关推荐

  • 初中数学勾股定理教案(优质19篇)

    教案的编写需要考虑到学生的实际情况、教材的特点和教学环境等因素。以下是小编为大家收集的初中教案范文,供大家参考借鉴。(一)知识与技能目标:2、会利用勾股定理进行

  • 勾股定理说课稿一等奖范文(22篇)

    在编写教案模板时,要充分考虑学生的思维方式和学习习惯,以促进学生的积极主动学习和自主发展。作者在这份教案模板中注重了学生的合作和互动,营造了积极的学习氛围。

  • 八年级勾股定理教案(实用16篇)

    教学工作计划的落实和执行,需要教师不断反思和改进教学方法,提高教学效果。以下是小编为大家整理的教学工作计划范文,供大家在备课和教学中参考和借鉴。初中数学。怎么写

  • 勾股定理说课稿(热门20篇)

    教案模板的编写需要灵活运用不同的教学方法和教学手段,以满足不同学生的学习需求和教学目标。以下是一些针对不同年级和学科的教学设计模板,希望能够帮助到您。

  • 精神鉴定证明(优秀15篇)

    范文范本可以帮助我们更好地掌握写作技巧和思路,提高我们的写作水平和表达能力。下面是一些写作范文范本,我们可以从中找到自己的不足并进行改进。xx,性别男,xxxx

  • 初中八年级勾股定理教案(实用23篇)

    作为教师的工作依据,教案起到引导和规范教学行为的作用。下面是一些经验丰富的教师编写的初中教案范文,供大家参考和学习。列举九年义务教育基本普及和高等教育迅速发展的

  • 勾股定理活动课教案(精选18篇)

    教学工作计划是指在一段时间内对教学工作进行规划和安排的书面材料,它是教师有效组织教学活动、提高教育教学质量的重要工具。小编为大家整理了一些教学工作计划范文中的关

  • 教资勾股定理教案(精选17篇)

    教学工作计划可以帮助学生了解学习的步骤和进程,提高学习效率和学习成果。小编为大家精心挑选了一些教学工作计划的范文,希望对大家的教学工作有所帮助。理解并掌握勾股定

  • 勾股定理证明小论文(精选17篇)

    范文范本是一种参考材料,可以帮助我们更好地掌握写作技巧。以下是小编为大家整理的一些范文范本,希望能够为大家的写作提供一些新的思路和方法。在第三单元中,我们学习了

  • 最新离职证明标准范文(16篇)

    通过分析范文,我们能够发现不同文章类型的结构和特点,提升自己的写作能力。这些范文涵盖了各个领域及各个层次的总结,相信能够给大家带来很多启示。员工_____,担任

  • 最新心理健康的论文参考文献(优秀19篇)

    范文范本可以帮助我们理清写作思路,并且提供一些常用的词汇和句型,使文章更加得体。小编为大家搜集了一些优秀的范文范本,希望对大家的写作有所启发和帮助。

  • 最新勾股定理小论文证明(优秀20篇)

    通过研究范文范本,我们可以学习到各种总结的写作方法和技巧,从而提高我们的写作水平。在范文范本中,我们可以找到一些经典的作品,通过欣赏这些经典作品,我们可以更好地

  • 初中数学勾股定理教案(优秀22篇)

    在编写初中教案时,我们需要考虑学生的实际情况、教学目标和教学资源等因素。在这里,小编为大家推荐了一些备受好评的初中教案范文,希望能够帮助到大家提高教学的水平。

  • 勾股定理说课稿一等奖(模板17篇)

    教案模板可以帮助教师在备课过程中更加系统地思考教学内容、教学目标和教学方法。除了教案模板,我们还为大家提供了一些教学资源和教案编写的注意事项,希望能够给大家提供

  • 八年级勾股定理教案(专业12篇)

    通过教学工作计划,教师可以有计划地组织教学内容、方法和评价,提高课堂教学效果。为了帮助大家更好地完成教学工作计划,小编为大家提供了一些编制教学工作计划的常见问题

  • 勾股定理说课稿(通用15篇)

    在编写教案模板时,教师可以参考一些优秀的教学案例,借鉴其中的经验和教学策略。请看以下教案模板参考,它们基于各阶段的教学目标和学科特点进行了精心设计。